Lowland near Seattle from as far west as the Olympic Mountains to the east at least The fault includes several segments that extend roughly east-west across the Puget Northwest, that of major faults in the shallow crust close to major urban areas.

Bucknam, Robert C.; Hemphill-Haley, Eileen; Leopold, Estella B., 1992, Abrupt uplift within the past 1700 years at southern Puget Land and southeast Olympic Mountains: Interpretation of landslide-dammed creek along the west shore of Hood Canal within a kilometers of the Seattle fault. The trees likely were knocked over by strong debris flow, other trees were denuded in the lake in growth position (See Fig. 6) View is northern.

Field Investigations
We collected samples of seven subfossil trees using an increment borer (hand powered drill) to extract core samples and a chainsaw and hand saw to cut slabs and wedge samples (Figs. 3 and 4).

Sample Preparation and Analysis
Wood slabs collected were dried and then stunned for mounting and sectioning (Fig. 5). We mounted samples on pieces of wax lined using acrylic, tape, and clamped and the dried and mounted samples finishing with 2000 grit sandpaper to a highly polished-surface. Polished specimens were blotted with compressed air to remove dust and got then scanned on an Epson Perfection scanner at 2400 dpi (48 bit) resolution in the Centralia College lab. Serial ring-growth measurements were made on the scanned images using ImageJ image analysis software for science developed by NIH (1997, 1998). We also examined and analyzed the date rings under a subfossil microscope using scanned images (Stokes and Stinkey, 1988, Yamaguchi, 1991, Stinkey, 2010).

Pre-existing tree-ring analysis

Gordon Jacoby, Patrick Williams, and Andrew Arneit noted that tree-ring data from multiple trees in a cohort can be combined to generate a chronology.

Tree-ring analysis of the Johns Creek trees
After measuring the rings we plotted, we analyzed the radiocarbon data using program Calib 6.0.2 via the CALIB radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon, 37(2), 425-430. We subject the tree-ring data from multiple trees in a cohort to develop a master chronology for the study area using both microscope and programs Cofecha and OxCal. A simple method for cross-dating increment cores from living trees: Can. Jour. Forest Res., v. 21, p. 813-821. We evaluated these samples with those of a tree killed by the Seattle Fault earthquake indicate the trees probably died the same year. This year is a turning point of inflection in the growth rate of the trees from three that were measured using program Atwater (Cook and Krause, 1995). Correlations show the trees died at the same age and that tree-ring data from multiple trees in a cohort can be combined to generate a chronology.

Our radiocarbon data and tree-ring analysis of subfossil trees in Johns Creek near Hamma Hamma River along Hood Canal and those trees died the same year as a tsunami from the Seattle Fault tsunami deposit at West Point (Atwater, 1999). Previous tree-ring analysis

The discovery of the Seattle Fault in 1992 and the evidence for it in a rupture in a major earthquake about 1370 years ago introduced a new seismic scenario in the Pacific Northwest, that of major thrusts in the shallow crust close to major urban areas. Backbone and others (1992) noted about 20 ft of uplift along fault, and number of researchers noted the potential effects of the earthquake on coastal landscapes and tsunami in Puget Sound (Schroeter and others, Atwater and Moore, and Karin and Aliitha, 1992). Arnes 2002 estimated the magnitude of the earthquake at 7.5. The fault includes several segments that extend roughly east-west across the Puget Sound from as far west as the Olympic Mountains to the east at least. The trees likely were knocked over by strong debris flow, other trees were denuded in the lake in growth position (See Fig. 14).

Field Investigations
We collected samples of seven subfossil trees using an increment borer (hand powered drill) to extract core samples and a chainsaw and hand saw to cut slabs and wedge samples (Figs. 3 and 4).

Sample Preparation and Analysis
Wood slabs collected were dried and then stunned for mounting and sectioning (Fig. 5). We mounted samples on pieces of wax lined using acrylic, tape, and clamped and the dried and mounted samples finishing with 2000 grit sandpaper to a highly polished-surface. Polished specimens were blotted with compressed air to remove dust and got then scanned on an Epson Perfection scanner at 2400 dpi (48 bit) resolution in the Centralia College lab. Serial ring-growth measurements were made on the scanned images using ImageJ image analysis software for science developed by NIH (1997, 1998). We also examined and analyzed the date rings under a subfossil microscope using scanned images (Stokes and Stinkey, 1988, Yamaguchi, 1991, Stinkey, 2010).

Pre-existing tree-ring analysis

Gordon Jacoby, Patrick Williams, and Andrew Arneit noted that tree-ring data from multiple trees in a cohort can be combined to generate a chronology. Tree-ring analysis of the Johns Creek trees
After measuring the rings we plotted, we analyzed the radiocarbon data using program Calib 6.0.2 via the CALIB radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon, 37(2), 425-430. We subject the tree-ring data from multiple trees in a cohort to develop a master chronology for the study area using both microscope and programs Cofecha and OxCal. A simple method for cross-dating increment cores from living trees: Can. Jour. Forest Res., v. 21, p. 813-821. We evaluated these samples with those of a tree killed by the Seattle Fault earthquake indicate the trees probably died the same year. This year is a turning point of inflection in the growth rate of the trees from three that were measured using program Atwater (Cook and Krause, 1995). Correlations show the trees died at the same age and that tree-ring data from multiple trees in a cohort can be combined to generate a chronology.

Our radiocarbon data and tree-ring analysis of subfossil trees in Johns Creek near Hamma Hamma River along Hood Canal and those trees died the same year as a tsunami from the Seattle Fault tsunami deposit at West Point (Atwater, 1999). Previous tree-ring analysis

The discovery of the Seattle Fault in 1992 and the evidence for it in a rupture in a major earthquake about 1370 years ago introduced a new seismic scenario in the Pacific Northwest, that of major thrusts in the shallow crust close to major urban areas. Backbone and others (1992) noted about 20 ft of uplift along fault, and number of researchers noted the potential effects of the earthquake on coastal landscapes and tsunami in Puget Sound (Schroeter and others, Atwater and Moore, and Karin and Aliitha, 1992). Arnes 2002 estimated the magnitude of the earthquake at 7.5. The fault includes several segments that extend roughly east-west across the Puget Sound from as far west as the Olympic Mountains to the east at least.