CHAPTER 4
Marine Sediments

© 2011 Pearson Education, Inc.

Chapter Overview

• Marine sediments contain a record of Earth history.
• Marine sediments provide a variety of important resources.
• Marine sediments have a variety of origins.

© 2011 Pearson Education, Inc.

Marine Sediments

• Eroded rock particles and fragments
 – Transported to ocean
• Deposit by settling through water column
• Oceanographers decipher Earth history through studying sediments.

© 2011 Pearson Education, Inc.

Paleoceanography and Marine Sediments

• Paleoceanography – study of how ocean, atmosphere, and land interactions have produced changes in ocean chemistry, circulation, biology, and climate
 – Marine sediments provide clues to past changes.

© 2011 Pearson Education, Inc.

Marine Sediment Classification

• Classified by origin
• Lithogenous – derived from land
• Biogenous – derived from organisms
• Hydrogenous or Authigenic – derived from water
• Cosmogenous – derived from outer space

© 2011 Pearson Education, Inc.
Lithogenous Sediments

- Eroded rock fragments from land
- Also called terrigenous
- Reflect composition of rock from which derived
- Produced by weathering
 - Breaking of rocks into smaller pieces

Small particles eroded and transported
- Carried to ocean
 - Streams
 - Wind
 - Glaciers
 - Gravity
- Greatest quantity around continental margins

Lithogenous Quartz and Wind Transport

Grain Size

- Proportional to energy of transportation and deposition
Sediment Texture

- **Grain size sorting**
 - Indication of selectivity of transportation and deposition processes
- **Textural maturity**
 - Increasing maturity if:
 - Clay content decreases
 - Sorting increases
 - Non-quartz minerals decrease
 - Grains are more rounded (abraded)

Pelagic Deposits

- Fine-grained material
- Accumulates slowly on deep ocean floor
- Pelagic lithogenous sediment from:
 - Volcanic ash (volcanic eruptions)
 - Wind-blown dust
 - Fine-grained material transported by deep ocean currents

Sediment Distribution

- **Neritic**
 - Shallow-water deposits
 - Close to land
 - Dominantly lithogenous
 - Typically deposited quickly
- **Pelagic**
 - Deeper-water deposits
 - Finer-grained sediments
 - Deposited slowly

Pelagic Deposits

- **Abyssal Clay**
 - At least 70% clay sized particles from continents
 - Red from oxidized iron (Fe)
 - Abundant if other sediments absent

Neritic Lithogenous Sediments

- **Beach deposits**
 - Mainly wave-deposited quartz-rich sands
- **Continental shelf deposits**
 - Relict sediments
- **Turbidite deposits**
 - Graded bedding
- **Glacial deposits**
 - High latitude continental shelf
 - Currently forming by ice rafting

Biogenous Sediment

- Hard remains of once-living organisms
- Two major types:
 - **Macroscopic**
 - Visible to naked eye
 - Shells, bones, teeth
 - **Microscopic**
 - Tiny shells or tests
 - Biogenic ooze
- Mainly algae and protozoans
Biogenous Sediment Composition

- Two most common chemical compounds:
 - Calcium carbonate (CaCO₃)
 - Silica (SiO₂ or SiO₂·nH₂O)

Silica in Biogenous Sediments

- Diatoms
 - Photosynthetic algae
 - Diatomaceous earth
- Radiolarians
 - Protozoans
 - Use external food

Calcium Carbonate in Biogenic Sediments

- Coccolithophores
 - Also called nanoplankton
 - Photosynthetic algae
 - Coccoliths – individual plates from dead organism
 - Rock chalk
 - Lithified coccolith-rich ooze

Silica in Biogenous Sediments

- Tests from diatoms and radiolarians generate siliceous ooze.
- Siliceous ooze lithifies into diatomaceous earth.

Calcium Carbonate in Biogenic Sediments

- Foraminifera
 - Protozoans
 - Use external food
 - Calcereous ooze

Distribution of Biogenous Sediments

- Depends on three processes:
 - Productivity
 - Destruction
 - Dilution
Neritic Deposits

- Dominated by lithogenous sediment, may contain biogenous sediment
- **Carbonate Deposits**
 - Carbonate minerals containing CO$_3$
 - Marine carbonates primarily limestone – CaCO$_3$
 - Most limestones contain fossil shells
 - Suggests biogenous origin
 - Ancient marine carbonates constitute 25% of all sedimentary rocks on Earth.

Carbonate Deposits

- **Stromatolites**
 - Fine layers of carbonate
 - Warm, shallow-ocean, high salinity
 - Cyanobacteria

Calcareous Ooze and the CCD

- Scarce calcareous ooze below 5000 meters (16,400 feet) in modern ocean
- Ancient calcareous oozes at greater depths if moved by sea floor spreading

Calcareous Ooze and the CCD

- **CCD** – Calcite compensation depth
 - Depth where CaCO$_3$ readily dissolves
 - Rate of supply = rate at which the shells dissolve
- Warm, shallow ocean saturated with calcium carbonate
- Cool, deep ocean undersaturated with calcium carbonate
 - Lysocline – depth at which a significant amount of CaCO$_3$ begins to dissolve rapidly
Hydrogenous Marine Sediments

- Minerals precipitate directly from seawater
 - Manganese nodules
 - Phosphates
 - Carbonates
 - Metal sulfides
- Small proportion of marine sediments
- Distributed in diverse environments

Phosphates and Carbonates

- Phosphates
 - Phosphorus-bearing
 - Occur beneath areas in surface ocean of very high biological productivity
 - Economically useful as fertilizer
- Carbonates
 - Aragonite and calcite
 - Oolites

Manganese Nodules

- Fist-sized lumps of manganese, iron, and other metals
- Very slow accumulation rates
- Many commercial uses
- Unsure why they are not buried by seafloor sediments

Metal Sulfides

- Metal sulfides
 - Contain:
 - Iron
 - Nickel
 - Copper
 - Zinc
 - Silver
 - Other metals
 - Associated with hydrothermal vents

Evaporites

- Evaporites
 - Minerals that form when seawater evaporates
 - Restricted open ocean circulation
 - High evaporation rates
 - Halite (common table salt) and gypsum
Cosmogenous Marine Sediments

- Macroscopic meteor debris
- Microscopic iron-nickel and silicate spherules (small globular masses)
 - Tektites
 - Space dust
- Overall, insignificant proportion of marine sediments

Pelagic and Neritic Sediment Distribution

- Distribution controlled by
 - Proximity to sources of lithogenous sediments
 - Productivity of microscopic marine organisms
 - Depth of water
 - Sea floor features

Marine Sediment Mixtures

- Usually mixture of different sediment types
- Typically one sediment type dominates in different areas of the sea floor.

Pelagic Sediment Types

Pelagic and Neritic Sediment Distribution

- Neritic sediments cover about ¼ of the sea floor.
- Pelagic sediments cover about ¾ of the sea floor.

Sea Floor Sediments Represent Surface Ocean Conditions

- Microscopic tests sink slowly from surface ocean to sea floor (10-50 years)
- Tests could be moved horizontally
- Most biogenous tests clump together in fecal pellets
 - Fecal pellets large enough to sink quickly (10-15 days)
Resources from Marine Sediments

- Energy resources
 - Petroleum
 - Mainly from continental shelves
 - Gas hydrates
- Sand and gravel (including tin, gold, and so on)
- Evaporative salts
- Phosphorite
- Manganese nodules and crusts

End of CHAPTER 4
Marine Sediments